3.
$$\frac{\sqrt{21}}{7}$$
; 4. 3; 6. $-\frac{1}{2}$; 7. $\frac{\sqrt{3}}{5}$;
8. 1; 9. $\frac{\sqrt{2}}{2}$; 10. (-1,1); 11. 4; 12. -1; 13. [2,+∞); 14. [-3,0).
15. M ; (1) 因为 $c^2 = (a-b)^2 + 4$, 所以 $a^2 + b^2 - c^2 = 2ab - 4$,

因为 $a^2 + b^2 - c^2 = 2ab \cos C$, 且 $\cos C = \frac{1}{3}$,

 $\frac{2}{3}ab = 2ab - 4$,

所以 $ab = 3$.

因为 $\cos C = \frac{1}{3}$, $0 < C < \pi$,

所以 $\sin C = \sqrt{1 - \cos^2 C} = \frac{2\sqrt{2}}{3}$,

所以 ABC 的面积为 $S = \frac{1}{2}ab \sin C = \sqrt{2}$.

(2) 因为 $\frac{4b}{\cos B} = \frac{\sqrt{6} \sin C}{\cos C}$, 以及正弦定理 $\frac{b}{\sin B} = \frac{c}{\sin C}$,

所以 $\tan B = \sqrt{3}$,

又因为 $0 < B < \pi$, 所以 $B = \frac{\pi}{3}$,

□□ $B > \sqrt{3}$,

□

所以 $\frac{\sin \alpha}{\cos \alpha} = 2$,

 18. 解: (1) 因为底部圆弧 AB 所在的圆的半径为1, $\angle BON = \theta$, 所以弧长 $AB = 2\theta$, 过 B 点作 $BE \perp CD$ 于点 E, 设 MN 与 AB 交于点 F,

-----2 分

则结合题设条件有 $BE = MF = \frac{1}{2} + \cos \theta$, $\angle BCD = \theta$,

所以
$$f(\theta) = 2000[(AD + BC) + \frac{5}{3} \times l_{\widehat{AB}}]$$

(2)
$$f'(\theta) = 2000(\frac{-\cos\theta - 2}{\sin^2\theta} + \frac{10}{3}) = 2000 \times \frac{-10\cos^2\theta - 3\cos\theta + 4}{\sin^2\theta}$$

= $2000 \times \frac{-(2\cos\theta - 1)(5\cos\theta + 4)}{\sin^2\theta}$, $0 < \theta < \frac{\pi}{2}$.

$$\diamondsuit f'(\theta) = 0$$
,则 $\cos \theta = \frac{1}{2}$, 因为 $0 < \theta < \frac{\pi}{2}$,则 $\theta = \frac{\pi}{3}$,

θ	$(0,\frac{\pi}{3})$	$\frac{\pi}{3}$	$(\frac{\pi}{3},\frac{\pi}{2})$
$f'(\theta)$	-		+
$f(\theta)$	7	极小值	7

.....14 分

当 $\theta = \frac{\pi}{3}$ 时, $f(\theta)$ 取得极小值,即最小值,最小值为 $f(\frac{\pi}{3}) = \frac{4000}{9}(6\sqrt{3} + 5\pi)$ (百元).

答: 当 θ 取 $\frac{\pi}{3}$ 时,建造总费用最低.16 分

19. (1)
$$f'(x) = 3x^2 - 4ax + a^2 = (3x - a)(x - a)$$
,

当 a < 0 时,当 x < a 或 $x > \frac{a}{3}$ 时, f'(x) > 0 ,当 $a < x < \frac{a}{3}$ 时, f'(x) < 0 , 所以函数 f(x) 在 $(-\infty,a)$ 和在 $(\frac{a}{2},+\infty)$ 上单调递增,在 $(a,\frac{a}{2})$ 上单调递减; 同理当a > 0时,函数f(x)在 $(-\infty, \frac{a}{3})$ 和在 $(a, +\infty)$ 上单调递增, 在 $(\frac{a}{2},a)$ 上单调递减. (2) 当 a = 0 时,函数 f'(x) 的零点是 0 ,而 f(0) = -1 ,所以不合题意,舍去; ……6分 当 $a \neq 0$ 时,函数 f'(x) 的零点是 a 和 $\frac{1}{2}a$, 因为 $f(a) = -1 \neq 0$, 所以由函数 f'(x) 与函数 f(x) 存在相同的零点, 得 $f(\frac{a}{3}) = 0$,即 $\frac{a^3}{27} - \frac{2a^3}{9} + \frac{a^3}{3} - 1 = 0$,解得 $a = \frac{3}{\sqrt[3]{a}}$. -----8分 (3)由(1)得, 当 $a \le 1$ 时,函数 f(x) 在 $[1,+\infty)$ 上单调递增,此时函数 f(x) 在区间 $[1,+\infty)$ 上的最小值为 $f(1) = a^2 - 2a$; ……10分 $\stackrel{\triangle}{=} \frac{a}{3} \le 1 < a$, $\mathbb{P} 1 < a \le 3 \text{ ft}$ 函数 f(x) 在区间[1,+ ∞)上的最小值为 f(a) = -1; ……12 分 当 $\frac{a}{2} > 1$,即a > 3时, 因为 $f(1) = a^2 - 2a$, f(a) = -1, 所以 f(1) > f(a), 此时函数的最小值为 f(a) = -1. ……14 分 所以函数 f(x) 在区间 $[1, +\infty)$ 上的最小值为 $\begin{cases} a^2 - 2a, a \le 1, \\ -1, a > 1. \end{cases}$ ……16分 20. 解: (1) 因为 $x_1, x_2 > 0$, 所以不等式 $\frac{f(x_1)}{x_2} - \frac{f(x_2)}{x_1} < 0 \Leftrightarrow x_1 f(x_1) < x_2 f(x_2)$, 令 g(x) = xf(x) , 因为 $0 < x_1 < x_2 < \sqrt{e}$ 时,不等式 $\frac{f(x_1)}{x_2} - \frac{f(x_2)}{x_1} < 0$ 恒成立, 所以函数 $g(x) = xf(x) = \ln x - ax^2$ 在 $(0, \sqrt{e})$ 上单调递增, -----2分 所以 $g'(x) = \frac{1}{x} - 2ax \ge 0$ 在 $(0, \sqrt{e})$ 恒成立, 即 $2a \le \frac{1}{r^2}$ 在 $(0,\sqrt{e})$ 恒成立,而 $\frac{1}{r^2} > \frac{1}{2}$ 所以 $2a \leq \frac{1}{2}$,即 $a \leq \frac{1}{2a}$, 所以实数 a 的取值范围为 $(-\infty, \frac{1}{2a}]$. ……4分

……16分

所以当 $a \le 0$ 时, 曲线 y = xf(x) 与直线 y = -x 有且只有一个公共点.